A COST-EFFECTIVENESS ANALYSIS OF VAGINAL CO₂ LASER THERAPY COMPARED TO STANDARD MEDICAL THERAPIES FOR GENITOURINARY SYNDROME OF MENOPAUSE-ASSOCIATED DYSPAREUNIA

Shannon L. Wallace, MD, Brad ST. Martin, MD, Kyueun Lee, MS, Eric R. Sokol, MD

PII: S0002-9378(20)30640-2

DOI: https://doi.org/10.1016/j.ajog.2020.06.032

Reference: YMOB 13323

To appear in: American Journal of Obstetrics and Gynecology

Received Date: 5 February 2020

Revised Date: 2 June 2020

Accepted Date: 10 June 2020

Please cite this article as: Wallace SL, Martin BS, Lee K, Sokol ER, A COST-EFFECTIVENESS ANALYSIS OF VAGINAL CO₂ LASER THERAPY COMPARED TO STANDARD MEDICAL THERAPIES FOR GENITOURINARY SYNDROME OF MENOPAUSE-ASSOCIATED DYSPAREUNIA, *American Journal of Obstetrics and Gynecology* (2020), doi: https://doi.org/10.1016/j.ajog.2020.06.032.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

- 1 TITLE: A COST-EFFECTIVENESS ANALYSIS OF VAGINAL CO₂ LASER THERAPY
- 2 COMPARED TO STANDARD MEDICAL THERAPIES FOR GENITOURINARY
- 3 SYNDROME OF MENOPAUSE-ASSOCIATED DYSPAREUNIA
- 4 (FIRST NAME INITIAL LAST NAME): Shannon L. WALLACE, MD1, Brad ST MARTIN,
- 5 MD1, Kyueun LEE, MS2, Eric R. SOKOL, MD1
- 6 Place of research: Stanford, CA USA
- 7 INSTITUTIONS (ALL): 1. Department of Obstetrics and Gynecology, Division of
- 8 Urogynecology, Stanford University Hospital, Palo Alto, CA, United States, 2. Department of
- 9 Health Research and Policy, Stanford University, Palo Alto, CA, United States
- 10 Presented at 2019 AUGS Meeting, Nashville, USA
- 11 Supported by a grant from the Foundation for Female Health Awareness
- 12 Word Count: Abstract_408____Main Text_3530
- 13 SLW reports no financial disclosure or conflicts of interests
- 14 BSM reports no financial disclosure or conflicts of interests
- 15 KY reports no financial disclosure or conflicts of interests
- 16 ERS reports grant funding from the NIH, Foundation for Female Health Awareness, Cook
- 17 MyoSite, Coloplast and ACell. ERS owns stock in Pelvalon and received travel reimbursement
- 18 from Contura.
- 19 ERS receives grant funding to Stanford University from Cynosure.
- 20 No other authors have conflicts with the manufacturers or any of the drugs or devices studied.
- 21 Corresponding author:
- 22 Shannon Wallace, 300 Pasteur Drive, Grant S285, Palo Alto, CA, 94035 303 880 7809 (phone),
- 23 650-498-5346 (fax), shanwall@stanford.edu, <u>shannon.wallace0605@gmail.com</u>,

24 **CONDENSATION:** Vaginal estrogen cream, oral ospemifene and vaginal CO₂ laser therapy are all cost-effective strategies for the treatment of menopausal dyspareunia. 25 **SHORT TITLE:** COST-EFFECTIVENESS ANALYSIS OF VAGINAL CO₂ LASER 26 THERAPY 27 AJOG at a Glance: 28 29 A. Why was the study conducted? We sought to perform a cost-effectiveness analysis of three therapies for dyspareunia 30 associated with genitourinary syndrome of menopause (GSM) including vaginal estrogen, 31 oral ospemifene and vaginal CO_2 laser therapy and determine if vaginal laser therapy is a 32 cost-effective treatment for this condition. 33 B. What are the key findings? 34 All three treatment methods were found to be cost-effective at a threshold of <\$50,000 35 per QALY for both moderate dyspareunia and severe dyspareunia. Vaginal CO₂ laser is 36 the optimal cost-effective strategy with the highest effectiveness (QALYs) below the 37 WTP threshold of \$50,000 per QALY. 38 C. What does this study add to what is already known? 39 This study suggests that the vaginal fractional CO₂ laser is a cost-effective strategy for 40 the treatment of dyspareunia associated with GSM, as are vaginal estrogen and oral 41 ospemifene. 42 **Key Words:** (alphabetized) cost-effectiveness analysis, dyspareunia, energy-based devices, 43 fractional CO₂ vaginal laser, genitourinary syndrome of menopause, ospemifene, vaginal 44 estrogen cream, vaginal laser 45

46

47 STRUCTURED ABSTRACT:

48 ABSTRACT BODY (250-500 words):

Background: Topical vaginal estrogen is considered the gold standard therapy for GSM-49 associated dyspareunia, but early investigations of energy-based devices show promise for 50 patients with contraindications or who are refractory to vaginal estrogen cream. While evaluating 51 safety, efficacy and long-term outcomes for novel technologies is critically important when new 52 technologies become available to treat unmet healthcare needs, evaluation of the costs of these 53 new technologies compared to existing therapies is also critically important, but often 54 understudied. 55 56 Objectives: We sought to perform a cost-effectiveness analysis of three therapies for GSM including vaginal estrogen, oral ospemifene and vaginal CO_2 laser therapy and determine if 57 58 vaginal laser therapy is a cost-effective treatment for dyspareunia associated with GSM. 59 Study Design: An IRB-exempt cost-effectiveness analysis was performed by constructing a decision tree using decision analysis software (TreeAge Pro; TreeAge Software, Inc., 60 Williamstown, MA) using integrated empirical data from the published literature. Tornado plots, 61 one-way and two-way sensitivity analyses were performed to assess how changes in the model's 62 input parameters altered the overall outcome of the cost-effectiveness model. 63 64 Results: All three treatment methods were found to be cost-effective below the WTP threshold 65 of \$50,000 per QALY for moderate dyspareunia. The ICER for vaginal CO₂ laser treatment of moderate dyspareunia was \$16,372.01 and the ICER for ospemifene was \$5,711.14. Although all 66 three treatment strategies were on the efficient frontier, vaginal CO₂ laser treatment was the 67 optimal strategy with the highest effectiveness. In a one-way sensitivity analysis of treatment 68 69 adherence, the vaginal CO_2 laser was no longer cost effective when the adherence fell below

70	38.8%. Vaginal estrogen cream and ospemifene remained cost-effective strategies at all ranges of
71	adherence. When varying the adherence to 100% for all strategies, oral ospemifene was
72	"dominated" by both vaginal fractional CO ₂ laser therapy and vaginal estrogen cream. In a two-
73	way sensitivity analysis of vaginal CO ₂ laser adherence and vaginal CO ₂ laser cost, vaginal CO ₂
74	laser therapy still remained the optimal strategy at 200% of its current cost (\$5,554.00) if the
75	adherence was greater than 55%. If the cost fell to 20% of its current cost (\$555.40), it was the
76	optimal strategy at all adherence values above 29%.
77	Conclusion: The present study showed that the vaginal fractional CO ₂ laser is a cost-effective
78	strategy for the treatment of dyspareunia associated with GSM, as are vaginal estrogen and oral
79	ospemifene. In our model, the vaginal CO_2 laser is the optimal cost-effective strategy and
80	consideration should be made to providing insurance coverage for this treatment option.
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93 MAIN TEXT:

94 Introduction:

Genitourinary syndrome of menopause (GSM), previously described incompletely as 95 vulvovaginal atrophy (VVA), is a chronic progressive condition associated with postmenopausal 96 estrogen deficiency¹. GSM is characterized by thinning and atrophy of the poorly unestrogenized 97 vaginal epithelium causing genital dryness, decreased lubrication with sexual activity, discomfort 98 or pain related to sexual activity, irritation of the vulva or vagina, dysuria and urinary frequency 99 100 and urgency. Unlike menopausal vasomotor symptoms, GSM typically worsens without treatment and can significantly impact a patient's quality of life. Up to 60% of postmenopausal 101 women may be affected by GSM, but many women do not seek treatment due to embarrassment 102 or misconception that these vaginal symptoms are a "normal part of aging.^{2,3}" 103

Due to the chronicity of this condition, a long-term therapy is required for symptom 104 regression,^{4,5}. Topical vaginal estrogen is currently considered the gold standard therapy for 105 GSM. Administration of exogenous estrogen restores normal vaginal pH levels, thickens and 106 revascularizes the epithelium, and increases vaginal lubrication. The reported one-year efficacy 107 of vaginal estrogen cream for GSM is approximately 80% to 90% based on observational data⁶⁻ 108 ¹⁰. The recommended regimen for vaginal estrogen cream is vaginal administration daily for two 109 weeks and then twice weekly. Although efficacy for vaginal estrogen cream is high, vaginal 110 estrogen cream has been documented to have low adherence rates between 15-54%¹¹⁻¹⁶. This 111 lack of compliance may be attributed to vaginal estrogen cream being inconvenient and difficult 112 to apply, especially in patients with limited dexterity. Although vaginal estrogen cream has few 113 side effects and has not been shown to markedly increase blood estrogen levels, many patients 114 are still concerned about the potential for postmenopausal bleeding and increased endometrial 115

6

thickening. Additionally, patients with a history of thromboembolism, endometrial hyperplasia
or cancer, breast cancer or estrogen-dependent cancers may not feel comfortable using vaginal
estrogens.

Nonhormonal therapies have been developed for these patients including selective 119 estrogen receptor modulators (SERMs) and energy-based devices (EBDs) for vaginal therapy. 120 SERMs, like ospemifene, exert estrogen agonist effects on vaginal epithelium. Ospemifene 121 treatment consists of daily oral therapy and clinical trials have shown that ospemifene is 122 generally well tolerated, has minimal effects on the endometrium, and neutral effects on the 123 breast. Most of the ospemifene safety and efficacy data have been reported in clinical trials, 124 where efficacy ranges from 75-80% after one-year follow-up. In general, adherence to an oral 125 therapy is higher than adherence to a vaginal cream which can be inconvenient and messy. 126 Previously, ospemifene adherence in the general population was difficult to approximate as most 127 128 adherence data was extracted from randomized clinical trials (RCTs), where it is estimated to be 80-90%¹⁶⁻²³. Faught et al. recently reviewed the medical and pharmacy claims data for 86,946 129 patients who were prescribed a dyspareunia-related medication. In this retrospective study, 130 ospemifene adherence was 40% compared with vaginal estrogen cream adherence which was 131 21%¹⁶. 132

Energy-based devices have gained momentum as minimally invasive procedures to treat both medical and cosmetic pelvic floor disorders (PFDs) including GSM, vaginal laxity, stress urinary incontinence, dyspareunia and vulvar disorders such as lichen diseases and vestibulitis²⁴⁻ ³¹. Vaginal EBDs remodel connective tissue and rebuild stratified squamous epithelium with increased glycogen and fibroblasts³². While the FDA has cleared energy-based devices for the treatment of pre-cancerous cervical or vaginal tissue and condylomas, the FDA has not cleared

139 energy-based devices for the treatment of GSM, urinary incontinence, sexual dysfunction or vaginal rejuvenation^{33,34}. However, early investigations of EBDs show good promise for the 140 treatment of these PFDs and many physicians offer vaginal energy-based treatment for patients 141 with contraindications or who are refractory to vaginal estrogen cream. There are multiple 142 devices on the market and the most commonly used device in the United States is the Mona Lisa 143 Touch® vaginal fractional CO₂ laser. Standard therapy consists of one laser treatment session 144 145 every four to six weeks for a total of three sessions annually. After the first year, expert opinion recommends one laser treatment session annually for maintenance therapy. Long-term outcome 146 studies on EBDs for GSM are lacking, but multiple one-year observational studies have shown 147 efficacy approaching that of estrogen therapy. Published adherence rates of close to 100% are 148 from observational and nonrandomized controlled trials³⁵⁻⁴³. 149 In light of a recent FDA safety communication regarding EBDs for "vaginal 150 151 rejuvenation," prospective RCTs are underway or currently being designed to further evaluate the efficacy and safety of these therapies for GSM^{33,34}. Evaluating safety, efficacy and long-term 152 outcomes for novel technologies is critically important when new technologies become available 153 to treat unmet healthcare needs. In the current healthcare climate, evaluation of the costs of new 154 technologies compared to existing therapies is also critically important, but often understudied. 155

The objective of this study was to perform a cost-effectiveness analysis of three therapies for GSM-associated dyspareunia including vaginal estrogen, oral ospemifene and vaginal CO₂ laser therapy and determine if vaginal laser therapy is a cost-effective treatment for this condition.

160 Materials and Methods:

	8
161	An IRB-exempt cost-effectiveness analysis was performed on three therapies for GSM-
162	associated dyspareunia including vaginal estrogen, oral ospemifene and vaginal CO2 laser
163	therapy. We constructed a decision tree using decision analysis software (TreeAge Pro; TreeAge
164	Software, Inc., Williamstown, MA) using integrated empirical data from the published literature.
165	The input parameters of the model and assumptions are discussed below and listed in Table 1.
166	Treatments modeled

We modeled a population of women with symptomatic GSM with dyspareunia without 167 contraindication for any therapy. Our model time horizon was 1 year, consistent with reported 168 outcomes of vaginal CO₂ laser therapy in the literature. 169

170 Model Design and Parameters

We did not allow crossover from vaginal estrogen cream to ospemifene to vaginal CO₂ 171 laser or vice versa in order to focus on a single treatment effect. For example, patients who failed 172 173 vaginal estrogen cream or SERMs were not allowed vaginal CO₂ laser in this model. With efficacy < 100%, there may be individuals using multiple treatment strategies, making it 174 challenging to distinguish differential cost-effectiveness for each specific treatment arm. 175 Adherence and side effects were modeled for the three treatment options. Vaginal 176 estrogen cream adherence in the general population is variable. To account for this variability, 177 the average vaginal estrogen cream adherence of four large studies was calculated and then 178 weighted by the number of patients in each study^{11,12,14,16}. This estimated average adherence for 179 vaginal estrogen cream was 24% which was used as the base case adherence rate. The base case 180 adherence rate for ospemifene was 40%, derived from the retrospective study by Faught et al^{16} . 181 In order to more closely model real-world adherence rates for the vaginal CO₂ laser, we used 182 adherence rates for other in-office procedures that require multiple visits. In-office procedures 183

such as intravesical Botox injections and percutaneous tibial nerve stimulation have adherence rates varying from 75-85% in the literature. As most RCTs have shown adherence close to 100% with the vaginal CO_2 laser, we used the upper limit of 85% as the base case adherence rate for the vaginal CO_2 laser⁴⁴⁻⁴⁶.

188 Data sources

We derived all probabilities from literature searches in PubMed to find probabilities for each of the relevant outcomes. We used search terms to identify articles specific to all treatment arms, including relevant review articles. Table 1 shows the base case scenario treatment outcome probabilities.

The efficacy of vaginal estrogen was assumed to be 90% for those with twice weekly 193 treatment for 1 year and the efficacy of ospemifene was assumed to be 80% for those with daily 194 treatment for 1 year. The reported efficacy at one year after vaginal CO₂ laser therapy is 90%. As 195 196 symptom resolution of GSM-associated dyspareunia requires persistent use of vaginal estrogen cream or ospemifene, non-adherent patients were assumed to have no efficacy of the treatment. 197 We similarly assumed that patients who were nonadherent to vaginal CO2 laser therapy did not 198 have any efficacy of treatment, as there is limited data on symptom resolution in patients who 199 receive on one or two laser sessions. 200

201 Complications or side effects associated with treatment were modeled with noted relative 202 probabilities based upon prior research. For vaginal estrogen, the probability of experiencing a 203 side effect within one year was 42%. The most common side effects included in the model were 204 vaginitis, headache, breast tenderness, endometrial hyperplasia/cancer, and vaginal discharge. 205 For ospemifene, the probability of experiencing a side effect within one year was 29% and the 206 most common side effects included in the model were muscle spasms, hot flashes, vaginitis,

vaginal bleeding and endometrial hyperplasia/cancer. The probability of experiencing a side
effect with vaginal laser therapy was 6%, and the side effects included were dysuria, vaginal
bleeding, and vaginitis. The relative probabilities of each side effect and the relative health utility
scores are listed in Table 1 and Table 2.

211 Health State Utility Values

Health state utility values were obtained from the literature in a similar fashion for 212 213 treatment efficacy, dyspareunia health states and side effects. Utility scores ranges from 0 to 1, 214 with 0 representing a health state equivalent to death and 1 representing perfect health. We calculated the expected number of QALYs for each strategy by taking a weighted average of the 215 utility of each pathway in the tree and the proportion of the patient cohort who followed that 216 pathway. We then calculated the QALYs over a 1-year period because costs and health benefits 217 were calculated over a 1-year time horizon. Based on published estimates, we estimated the 218 219 relative health utility score of postmenopausal women with severe dyspareunia (0.5), moderate dyspareunia (0.65), and effective treatment without dyspareunia (0.9). 220

221 *Costs*

Drug costs were obtained from the 2017 Medicare database. This is a recognized source 222 of available drug costs in the US. One vaginal estrogen cream tube lasts three months and costs 223 \$200. If the patient was adherent to the treatment regimen, a one-year supply of vaginal estrogen 224 cream was equivalent to four tubes for a total of \$800. If the patient was not adherent to the 225 vaginal estrogen treatment regimen, then the cost was assumed to be \$200 for the initial tube. A 226 three-month supply of ospemifene costs \$210. If the patient was adherent to ospemifene 227 228 treatment, a one-year supply costs \$840. If the patient was not adherent to the ospemifene treatment, then the cost was assumed to be \$210 for the initial three-month supply. The vaginal 229

fractional CO₂ laser costs were \$911 per treatment session which is the out-of-pocket cost at our 230 institution. A one-year treatment regimen of vaginal laser therapy costs \$2,733 which is 231 equivalent to three treatment sessions. If the patient was not adherent to the vaginal fractional 232 CO₂ laser, then the cost was assumed to be \$911. Costs are listed in Table 3. Only patient costs 233 were modeled in this cost-effectiveness analysis. Physician and hospital costs including 234 physicians' and nurses' time and equipment, as well as indirect costs like transportation and 235 236 productivity losses were not modeled. Side effects did not accrue additional costs. Cost-effectiveness analysis (CEA) 237 Cost-effectiveness was determined using the incremental cost-effectiveness ratio (ICER). 238 239 ICERs were calculated by first ranking strategies by increasing cost and then calculating $\Delta Cost/\Delta$ Effectiveness for adjacent strategies. The willingness-to-pay (WTP) threshold was set a 240 priori at \$50,000 per QALY. Strategies were considered "dominated" if they were both less 241 242 effective and more expensive than another strategy. No ICER was reported for dominated strategies as they are not cost-effective. 243 Sensitivity analysis 244 The sensitivity analyses determined whether changes in the model's input parameters 245 altered the overall outcome of the cost-effectiveness model. We conducted Tornado plots and 246 multiple one-way and two-way sensitivity analyses. Probability values were varied across the 247 248 ranges listed in Table 1 and Table 2 to determine if a threshold existed where the preferred

strategy would change. Costs were varied from 20 to 200% of the base case value.

250 **Results:**

251 Cost-effectiveness analysis:

252	All three treatment methods were found to be cost-effective at a WTP threshold of
253	<\$50,000 per QALY for moderate dyspareunia in the base case scenario. The ICER for vaginal
254	CO ₂ laser treatment of moderate dyspareunia was \$16,372.01 and the ICER for ospemifene was
255	5,711.14. Although all three treatment strategies were on the efficient frontier, vaginal CO ₂
256	laser treatment was the optimal strategy with the highest effectiveness (Table 4).
257	One-way sensitivity analysis:
258	Tornado plots and univariate sensitivity analyses were performed on all variables. The
259	variables that most influenced the results were the adherence rates of vaginal estrogen cream,
260	adherence rates of the vaginal CO ₂ laser and the treated dyspareunia health utility scores (Figure
261	1).
262	A. Dyspareunia health utility score
263	In a one-way sensitivity analysis, all strategies were cost-effective when the health utility
264	value of untreated dyspareunia was varied between 0.2 and 0.8. When using 0.5 as the health
265	utility score of severe dyspareunia, all three strategies were cost effective with the vaginal CO_2
266	laser as the optimal treatment strategy (Table 4). All strategies were cost-effective when the
267	health utility score of treated dyspareunia was above 0.75, but when the score fell below 0.65,
268	ospemifene and the vaginal CO ₂ laser were no longer cost-effective.
269	B. Adherence
270	In a one-way sensitivity analysis of treatment adherence, the vaginal CO ₂ laser was no
271	longer cost effective when the adherence fell below 38.8%. Vaginal estrogen cream and
272	ospemifene remained cost-effective strategies at all ranges of adherence. The vaginal CO ₂ laser
273	was no longer a cost-effective strategy when adherence of vaginal estrogen cream increased to
274	90% and when the adherence of ospemifene increased to 100%.

275 C. Cost

All three treatment methods were cost effective when varying the annual cost from 20%to 200% of the base case cost of all three strategies.

D. Complications

When the probability of complications for each of the three strategies was varied from
0% to 100%, both vaginal estrogen cream and the vaginal CO₂ laser remained cost effective.
When the probability of complications after vaginal CO₂ laser treatment exceeded 98%, then
ospemifene became the optimal strategy. Ospemifene became a "dominated" strategy when the

probability of complications with ospemifene treatment exceeded 85%.

284 *Two-way sensitivity analysis:*

285 A. Adherence of Different Treatment Strategies

286 When adherence was assumed to be 100% for all treatment strategies, then oral

ospemifene was "dominated" by both vaginal CO₂ laser therapy and vaginal estrogen cream.

Vaginal CO₂ laser remained the optimal strategy with the highest effectiveness and an ICER of

\$39,508.3 (Table 5). In a two-way sensitivity analysis of vaginal estrogen cream adherence and

vaginal CO_2 laser adherence, ospemifene was the optimal treatment strategy if vaginal estrogen

- cream adherence was less than 36% and vaginal CO₂ laser adherence was less than 38%.
- 292 Otherwise the relationship between vaginal estrogen cream adherence and vaginal CO₂ laser
- adherence was linear such that vaginal estrogen cream was the optimal strategy if adherence was
- 294 3-5% more than the vaginal CO₂ laser (Figure 2).

B. Adherence and Cost

In a two-way sensitivity analysis of vaginal CO₂ laser adherence and vaginal CO₂ laser cost, vaginal CO₂ laser therapy still remained the optimal strategy at 200% of its current cost 298 (\$5,554.00) if the adherence was greater than 55%. If the cost fell to 20% of its current cost (\$555.40), it was the optimal strategy at all adherence values above 29% (Figure 3). In a two-299 way sensitivity analysis, even at 20% of its current cost (\$160.00), vaginal estrogen cream only 300 became the preferred strategy when vaginal estrogen cream adherence exceeded 83% (Figure 3). 301 Similarly, in a two-way sensitivity analysis, ospemifene became the optimal strategy when 302 ospemifene adherence exceeded 91% at 20% of its current cost (\$168.00) (Figure 4). 303 304 **Discussion/Comment: 1. Principal Findings:** 305 The present study showed that the vaginal fractional CO_2 laser is a cost-effective strategy for 306 the treatment of dyspareunia associated with GSM, as are vaginal estrogen and oral ospemifene. 307 2. Results: 308 Our model demonstrated that although all three strategies were cost-effective, the vaginal 309 CO_2 laser was the optimal strategy with the highest effectiveness. We were surprised by this 310 finding given the higher up-front costs of vaginal laser therapy. Currently, vaginal fractional CO₂ 311 laser therapy for non-FDA approved indications is not covered by any private or government 312 insurance and patients pay out-of-pocket for treatment. The results of our research could support 313 coverage of vaginal laser therapy, as many insurance companies and Medicaid/Medicare provide 314 coverage for vaginal estrogen cream and ospemifene. Our research suggests that the vaginal 315 CO₂ laser is actually the preferred cost-effective strategy and consideration should be made to 316 providing insurance coverage for this treatment option once the FDA has approved the use of the 317 vaginal laser for the treatment of GSM-associated dyspareunia. 318

319 **3.** Clinical Findings:

320 At all ranges of adherence, both vaginal estrogen cream and ospemifene were cost-effective strategies. However, the vaginal CO₂ laser was always the optimal cost-effective strategy until 321 adherence fell below 38.8%. Although adherence did not considerably affect cost-effectiveness 322 in our model, vaginal estrogen cream and ospemifene were not optimal strategies at lower ranges 323 of adherence. Our base case scenario models real-world situations where adherence rates of 324 vaginal estrogen cream have been historically low in the general population. Weissman-Brenner 325 326 at el retrospectively reviewed 1,782 Israeli patients who were using continuous monotherapy 327 with estrogen-containing vaginal creams or gels. They found that after 6 months of treatment, only 54% of patients had asked for another prescription¹². Similarly, in a recent study on 23,761 328 postmenopausal women who were using vaginal estrogen cream, Portman et al demonstrated that 329

during 12 months of follow-up more than 86.2% to 89.4% of estrogen cream users had
discontinued treatment after the first prescription¹¹.

Current observational cohort studies and randomized controlled trials of vaginal laser therapy have high compliance rates. While patient's out-of-pocket payment may confound this data, other in-office procedures such as intravesical Botox injections and percutaneous tibial nerve stimulation also have high adherence rates $(75\%-85\%)^{44-46}$. If vaginal CO₂ laser therapy is as cost-effective for the patient as other treatment options, then a strategy with higher compliance rates may overcome suboptimal treatment of GSM due to low adherence.

Long-term efficacy, safety and complications of vaginal laser therapy for the treatment of GSM is limited. However, one-year and two-year studies seem to highlight the mild and transient nature of most side-effects of vaginal laser therapy³⁸⁻⁴⁰. Gasper et al published an 18-month prospective study comparing patients who received vaginal laser therapy with vaginal estrogen cream to those patients who received vaginal estrogen cream alone⁵⁵. In the vaginal laser group,

4% of patients experienced side effects including mild-to-moderate pain, transient edema and
vaginal spotting. This was less than the side effects of the vaginal estrogen group, 8% of whom
experienced vaginal spotting, 4% mastodynia and 12% abdominal pain.

Although vaginal estrogen cream and ospemifene have a higher risk of side-effects in the literature, most of these are short-term and quickly treated. In our model, the health utility scores related to side-effects of the three treatment options were small. Sensitivity analyses show that they had minimal effect on the overall cost-effectiveness of the treatment strategies.

350

4. Research Implications:

At our institution, we try to systematically evaluate efficacy, safety, mechanisms of action, complications and cost-effectiveness of novel technologies to provide a complete picture. Recent controversies surrounding medical devices in the women's health space highlight the critical role of such a model before wide-spread adoption of these technologies. Our analysis should encourage hospital systems, private insurance companies and government insurers to consider coverage of vaginal laser treatments for patients if they are shown to be safe and effective, as required by FDA.

358 **5.** Stren

5. Strength and Limitations:

The major strength of this study was our use of published national data and data from randomized controlled trials where outcomes measures are collected with careful regular followup. Our results are also generalizable given that the vast majority of probabilities, costs, and utilities came from nationally representative studies and publicly available cost data from Medicare. Furthermore, our sensitivity analyses varied parameters including adherence across reasonable ranges of values to investigate factors that could affect the cost-effectiveness of our model.

As with any model, we are limited by the availability of data and the accuracy of our
assumptions. This is further limited in the case of more novel therapies with less long-term
such as ospemifene and vaginal CO ₂ laser therapy. We chose to model the reported
complications from recent randomized controlled trials of vaginal laser therapy. Anecdotal

370 reports and some case series suggest that there may be additional rare complications of the
371 vaginal laser such as post-treatment burning and scarring.⁵⁶ With more long-term outcome data
372 on the horizon from randomized-controlled trials and prospective studies, the vaginal laser

therapy complication profile may have to be updated.

366

367

368

369

As more efficacy data was available for vaginal laser treatment as mono-therapy for GSM, 374 375 we chose not to allow concurrent treatment or crossover between treatment arms. In practice, many providers may use a multimodal treatment strategy for GSM with vaginal laser therapy in 376 addition to estrogen or SERM therapy. More complex CEA models may model real-world 377 378 situations more accurately, but models should also be simple enough to be reproducible and transparent. Inherent to the nature of modeling, this balance can be complicated when designing 379 a model to garner meaningful results. Once more data is available on the outcomes of vaginal 380 laser therapy plus estrogen or SERM treatment, an additional CEA of multimodal therapy may 381 be warranted. 382

Our results should only be used as a guide in the context of existing clinical guidelines. Clinical decision-making for individual patients should also account for other factors, such as medical history, comorbidities, and patient preference. Future research on treatment efficacy, probabilities and costs will help decrease the uncertainty in the model input parameters and improve the precision of the finding. A unique limitation is that CO₂ laser therapy is the only non-covered treatment modality included in this study, so the costs may be artificially elevated

17

data,

389	compared to vaginal estrogen and ospemifene, which are covered by Medicare. As costs of
390	treatment evolve over time and more long-term data become available, this research may need to
391	be replicated to account for these changes.
392	6. Conclusions:
393	In conclusion, we found that vaginal fractional CO ₂ laser therapy is a cost-effective
394	strategy for the treatment of menopausal dyspareunia, as are vaginal estrogen cream and oral
395	ospemifene. Our research suggests that the vaginal CO ₂ laser is actually the preferred cost-
396	effective strategy and consideration should be made to providing insurance coverage for this
397	treatment option if it is proven to be safe and effective in FDA trials.
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	

413 References:

414	1.	Shifren JL. Genitourinary Syndrome of Menopause. Clin Obstet Gynecol. 2018;
415		61(3):508-16.
416	2.	Portman DJ, Gass MLS. Vulvovaginal Atrophy Terminology Consensus Conference
417		Panel. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy
418		from the International Society for the Study of Women's Sexual Health and the North
419		American Menopause Society. Menopause. 2014; 21(10):1063-8.
420	3.	Parish SJ, Nappi RE, Krychman ML, et al. Impact of vulvovaginal health on
421		postmenopausal women: a review of surveys on symptoms of vulvovaginal atrophy. Int J
422		Womens Health. 2013; 5:437-47.
423	4.	Gandhi J, Chen A, Dagur G, et al. Genitourinary syndrome of menopause: an overview of
424		clinical manifestations, pathophysiology, etiology, evaluation, and management. Am J
425		Obstet Gynecol. 2016; 215(6):704-11.
426	5.	North American Menopause Society. Management of symptomatic vulvovaginal atrophy:
427		2013 position statement of The North American Menopause Society. Menopause. 2013;
428		20(9):888-902.
429	6.	Rioux JE, Devlin MC, Gelfand MM, et al. 17β -estradiol vaginal tablet versus conjugated
430		equine estrogen vaginal cream to relieve menopausal atrophic vaginitis. Menopause.
431		2018; 25(11):1208-13.
432	7.	Biehl C, Plotsker O, Mirkin S. A systematic review of the efficacy and safety of vaginal
433		estrogen products for the treatment of genitourinary syndrome of menopause.
434		Menopause. 2019; 26(4):431-53.

	urn		$\mathbf{D}_{\mathbf{r}}$	n r	~ 1
JU	um	aı		υт	U.

435	8.	Bachmann G, Bouchard C, Hoppe D, et al. Efficacy and safety of low-dose regimens of
436		conjugated estrogens cream administered vaginally. Menopause. 2009; 16(4):719-27.
437	9.	Santen RJ. Vaginal administration of estradiol: effects of dose, preparation and timing on
438		plasma estradiol levels. Climacteric. 2015; 18(2):121-34.
439	10.	Rahn D, Carberry C, Sanses T et al. Society of Gynecologic Surgeons Systematic Review
440		Group. Vaginal Estrogen for Genitourinary Syndrome of Menopause A Systematic
441		Review. Obstet Gynecol. 2014; 124(6): 1147-56.
442	11.	Portman D, Shulman L, Yeaw J, et al. One-year treatment persistence with local estrogen
443		therapy in postmenopausal women diagnosed as having vaginal atrophy. Menopause.
444		2015; 22(11):1197-203.
445	12.	Weissmann-Brenner A, Bayevsky T, Yoles I. Compliance to vaginal treatment—tablets
446		versus cream: a retrospective 9 years study. 2016; 24(1):73-6.
447	13.	Minkin MJ, Maamari R, Reiter S. Improved compliance and patient satisfaction with
448		estradiol vaginal tablets in postmenopausal women previously treated with another local
449		estrogen therapy. Int J Womens Health. 2013; 5:133-9.
450	14.	Shulman LP, Portman DJ, Lee WC, et al. A retrospective managed care claims data
451		analysis of medication adherence to vaginal estrogen therapy: implications for clinical
452		practice. J Womens Health (Larchmt). 2008; 17(4):569-78.
453	15.	Krause M, Wheeler TL, Snyder TE, Richter HE. Local Effects of Vaginally Administered
454		Estrogen Therapy: A Review. J Pelvic Med Surg. 2009; 15(3): 105-14.
455	16.	Faught BM, Soulban G, Yeaw J. Ospemifene versus local estrogen: adherence and costs
456		in postmenopausal dyspareunia. J Comp Eff Res. 2019; 8(13):1111-23.

457	17. Goldstein SR, Bachmann GA, Koninckx PR, et al. Ospemifene 12-month safety and
458	efficacy in postmenopausal women with vulvar and vaginal atrophy. Climacteric. 2014;
459	17:173-82.
460	18. Constantine G, Graham S, Portman DJ, et al. Female sexual function improved with
461	ospemifene in postmenopausal women with vulvar and vaginal atrophy: results of a
462	randomized, placebo-controlled trial. Climacteric. 2015; 18(2):226-32.
463	19. Bachmann GA, Komi JO. Ospemifene effectively treats vulvovaginal atrophy in
464	postmenopausal women: results from a pivotal phase 3 study. Menopause.
465	2010;17(3):480-6.
466	20. Portman D, Palacios S, Nappi RE, Mueck AO. Ospemifene, a non-oestrogen selective
467	oestrogen receptor modulator for the treatment of vaginal dryness associated with
468	postmenopausal vulvar and vaginal atrophy: a randomized, placebo-controlled, phase III
469	trial. Maturitas, 2014; 78(2): 91-8.
470	21. Wurtz GT, Kao CJ, DeGregorio MW. Safety and efficacy of ospemifene for the treatment
471	of dyspareunia associated with vulvar and vaginal atrophy due to menopause. Clin Interv
472	Aging. 2014; 9:1939-50.
473	22. Nappi RE, Panay N, Bruyniks N, et al. The clinical relevance of the effect of ospemifene
474	on symptoms of vulvar and vaginal atrophy. Climacteric. 2015; 18(2):233-40.
475	23. Cui Y, Zong H, Yan H, et al. The Efficacy and Safety of Ospemifene in Treating
476	Dyspareunia Associated with Postmenopausal Vulvar and Vaginal Atrophy: A
477	Systematic Review and Meta Analysis. J Sex Med. 2014; 11(2):487-97.
478	24. Gaspar A, Addamo G, Brandi H. Vaginal fractional CO ₂ laser: A minimally invasive
479	option for vaginal rejuvenation. Am J Cosmetic Surg. 2011; 28(3):156–62.

	urn	D		nr		
	սոո			υц		

480	25.	Tadir Y, Gaspar A, Lev-Sagie A, et al. Light and energy based therapeutics for
481		genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med.
482		2017; 49:137-59.
483	26.	Sipos AG, Kozma B, Poka R, et al. The Effect of Fractional CO ₂ laser Treatment on the
484		Symptoms of Pelvic Floor Dysfunctions: Pelvic Floor Distress Inventory-20
485		Questionnaire. Lasers Surg Med. 2019; 1-5.
486	27.	Pergialiotis V, Prodromidou A, Perrea DN, et al. A systematic review on vaginal laser
487		therapy for treating stress urinary incontinence: do we have enough evidence? Int
488		Urogynecol J. 2017; 28(10):1445-51.
489	28.	Krychman M, Rowan CG, Allan BB, et al. Effect of single-treatment, surface-cooled
490		radiofrequency therapy on vaginal laxity and female sexual function: The VIVEVE I
491		randomized controlled trial. J Sex Med. 2017; 14:215-25.
492	29.	Salvatore S, Nappi RE, Parma M, et al. Sexual function after fractional microablative
493		CO ₂ laser in women with vulvovaginal atrophy. Climacteric. 2015; 18:219-25.
494	30.	Faubion SS, Larkin LC, Stuenkel CA, et al. Management of genitourinary syndrome of
495		menopause in women with or at high risk for breast cancer: consensus recommendations
496		from The North American Menopause Society and The International Society for the
497		Study of Women's Sexual Health. Menopause. 2018; 25(6):596-608.
498	31.	Shobeiri SA, Kerkhof MH, Minassian VA, et al. IUGA Research and Development
499		Committee. IUGA committee opinion: laser-based vaginal devices for treatment of stress
500		urinary incontinence, genitourinary syndrome of menopause, and vaginal laxity. Int
501		Urogynecol J. 2019; 30(3):371-6.

502	32. Lang P, Karram M. Lasers for pelvic floor dysfunctions: is there evidence? Curr Opin
503	Obstet Gynecol. 2017; 29(5):354-8
504	33. Statement from FDA Commissioner Scott Gottlieb, M.D., on efforts to safeguard
505	women's health from deceptive health claims and significant risks related to devices
506	marketed for use in medical procedures for "vaginal rejuvenation."
507	https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-
508	scott-gottlieb-md-efforts-safeguard-womens-health-deceptive-health-claims
509	34. FDA Warns Against Use of Energy-Based Devices to Perform Vaginal "Rejuvenation"
510	or Vaginal Cosmetic Procedures: FDA Safety Communication.
511	https://www.fda.gov/medical-devices/safety-communications/fda-warns-against-use-
512	energy-based-devices-perform-vaginal-rejuvenation-or-vaginal-cosmetic
513	35. Pitsouni E, Grigoriadis T, Falagas ME, et al. Laser therapy for the genitourinary
514	syndrome of menopause. A systematic review and meta-analysis. Maturitas. 2017;
515	103:78-88.
516	36. Siliquini GP, Tuninetti V, Bounous VE, et al. Fractional CO ₂ laser therapy: a new
517	challenge for vulvovaginal atrophy in postmenopausal women. Climacteric. 2017;
518	20(4):379–84.
519	37. Salvatore S, Nappi RE, Zerbinati N, et al. A 12-week treatment with fractional CO ₂ laser
520	for vulvovaginal atrophy: a pilot study. Climacteric. 2014; 17:363-9.
521	38. Salvatore S, Leone Roberti Maggiore U, Origoni M, et al. Microablative fractional CO ₂
522	laser improves dyspareunia related to vulvovaginal atrophy: a pilot study. J Endometr.
523	2014; 6:150-6.

524	39. Sokol ER, Karram MM. Use of a novel fractional CO ₂ laser for the treatment of
525	genitourinary syndrome of menopause: 1-year outcomes. Menopause. 2017; 24(7):810-4.
526	40. Sokol ER, Karram MM. An assessment of the safety and efficacy of a fractional CO_2
527	laser system for the treatment of vulvovaginal atrophy. Menopause. 2016; 23(10):1102-7.
528	41. Samuels JB, Garcia MA. Treatment to External Labia and Vaginal Canal with CO_2 Laser
529	for Symptoms of Vulvovaginal Atrophy in Postmenopausal Women. Aesthet Surg J.
530	2019; 39(1):83-93.
531	42. Cruz VL, Steiner ML, Pompei LM, et al. Randomized, double-blind, placebo-controlled
532	clinical trial for evaluating the efficacy of fractional CO ₂ laser compared with topical
533	estriol in the treatment of vaginal atrophy in postmenopausal women. Menopause. 2018;
534	25(1):21-8.
535	43. Paraiso MFR, Ferrando CA, Sokol ER, et al. A randomized clinical trial comparing
536	vaginal laser therapy to vaginal estrogen therapy in women with genitourinary syndrome
537	of menopause: The VeLVET Trial. Menopause. 2019; 27. PMID: 31574047.
538	44. Sirls ER, Killinger KA, Boura J, Peters KM. Percutaneous Tibial Nerve Stimulation in
539	the Office Setting: Real-world Experience of Over 100 Patients. Urology. 2018; 113:34-
540	9.
541	45. Te Dorsthorst MJ, Heesakkers JPFA, van Balken MR. Long-term real-life adherence of
542	percutaneous tibial nerve stimulation in over 400 patients. Neurourol Urodyn. 2019; 1-5.
543	46. Nitti VW. Ginsberg D, Sievert KD, et al. Durable Efficacy and Safety of Long-Term
544	OnabotulinumtoxinA Treatment in Patients with Overactive Bladder Syndrome: Final
545	Results of a 3.5-Year Study. J Urol. 2016; 196(3):791-800.

546	47. DiBonaventura M, Luo X, Moffatt M, et al. The Association Between Vulvovaginal
547	Atrophy Symptoms and Quality of Life Among Postmenopausal Women in the United
548	States and Western Europe. J Womens Health (Larchmt). 2015; 24(9):713-22.
549	48. Craig BM, Mitchell SA. Examining the Value of Menopausal Symptom Relief among US
550	Women. Value in Health. 2016; 19(2):158-66.
551	49. Mittmann N, Trakas K, Risebrough N, Liu BA. Utility Scores for Chronic Conditions in a
552	Community-Dwelling Population. Pharmaceconomics. 1999; 15(4):396-76.
553	50. Hux M, Ng C, Ortega GL, et al. Utility values for pre-menopausal women suffering from
554	symptomatic uterine fibroids. Expert Rev. Pharmacoecon. Outcomes Res. 2015;
555	15(1):181-9.
556	51. Jewell EL, Smrtka M, Broadwater G, et al. Utility Scores and Treatment Preferences for
557	Clinical Early-Stage Cervical Cancer. Value in Health. 2011; 14(4):582-6.
558	52. Bermingham SL, Ashe JF. Systematic review of the impact of urinary tract infections on
559	health-related quality of life. BJUI. 2012; 110; 830-6.
560	53. WebMD. Prescription Drug Prices. [cited 2019 12/9/19]; Available from:
561	http://www.webmd.com/rx
562	54. Medicare Prescription Drug Coverage. [cited 2019 12/9/19]; Available from:
563	https://www.medicare.gov/drug-coverage-part-d
564	55. Gaspar A, Brandi H, Gomez V, et al. Efficacy of Erbium: YAG laser treatment compared
565	to topical estriol treatment for symptoms of genitourinary syndrome of menopause.
566	Lasers Surg Med. 2017; 49(2):160-8.

567	56. Gordon C, Gonzales S, Krychman ML. Rethinking the techno vagina: a case series of
568	patient complications following vaginal laser treatment for atrophy. Menopause. 2019;
569	26(4):423-7.
570	
571	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	

591 Tables:

592 Table 1: Model Outcome Percentage

Variable	Probability	Source	Range
One year adherence to vaginal estrogen cream	28.0%	[11, 12]	0%-100%
Symptom improvement with 1 year vaginal estrogen cream	90.0%	[7, 8]	
Complications with 1 year vaginal estrogen cream	42.0%	[7, 8, 9, 15]	0%-100%
*If complications:			
Vaginitis with 1 year vaginal estrogen cream	14.5%	[7, 8, 9, 15]	
Headache with 1 year vaginal estrogen cream	34.3%	[7, 8, 9, 15]	
Breast tenderness with 1 year vaginal estrogen cream	3.6%	[7, 8, 9, 15]	
Vaginal bleeding with 1 year vaginal estrogen cream	21.0%	[7, 8, 9, 15]	
Endometrial hyperplasia/cancer with 1 year vaginal estrogen cream	2.9%	[7, 8, 9, 15]	
Vaginal discharge with 1 year vaginal estrogen cream	23.8%	[7, 8, 9, 15]	
One year adherence to ospemifene	88.0%	[15, 16, 17]	0%-100%
Symptom improvement with 1 year ospemifene	70.0%	[16, 17, 20]	
Complications with 1 year ospemifene	29.0%	[20, 21, 22]	0%-100%
*If complications:			
Hot flashes with 1 year ospemifene	24.3%	[20, 21, 22]	
Vaginitis with 1 year ospemifene	26.7%	[20, 21, 22]	
Muscle spasms with 1 year ospemifene	28.0%	[20, 21, 22]	
Vaginal bleeding with 1 year ospemifene	19.0%	[20, 21, 22]	
Endometrial hyperplasia/cancer with with 1 year ospemifene	2.1%	[20, 21, 22]	
One year adherence to CO_2 vaginal laser	88.0%	[44, 45, 46, 55]	0%-100%
Symptom improvement with CO ₂ vaginal laser	90.0%	[39, 40, 43]	
Complications after CO ₂ vaginal laser	6.6%	[39, 40, 43]	0%-100%
*If complications:			
Vaginitis after CO ₂ vaginal laser	14.5%	[39, 40, 43]	
Dysuria after CO ₂ vaginal laser	45.5%	[39, 40, 43]	
Vaginal bleeding after CO ₂ vaginal laser	21.0%	[39, 40, 43]	

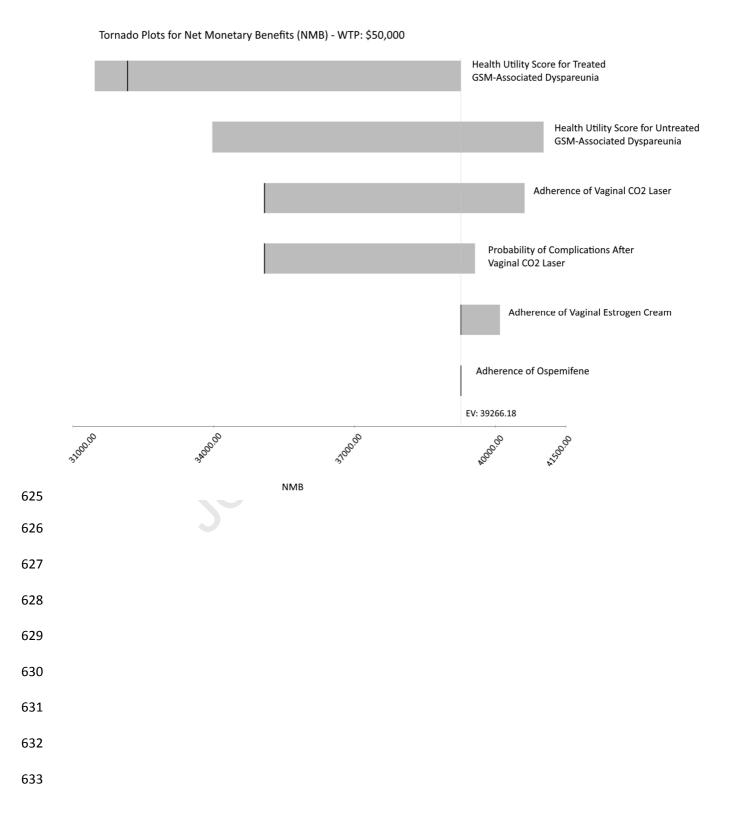
* Indicates conditional probabilities

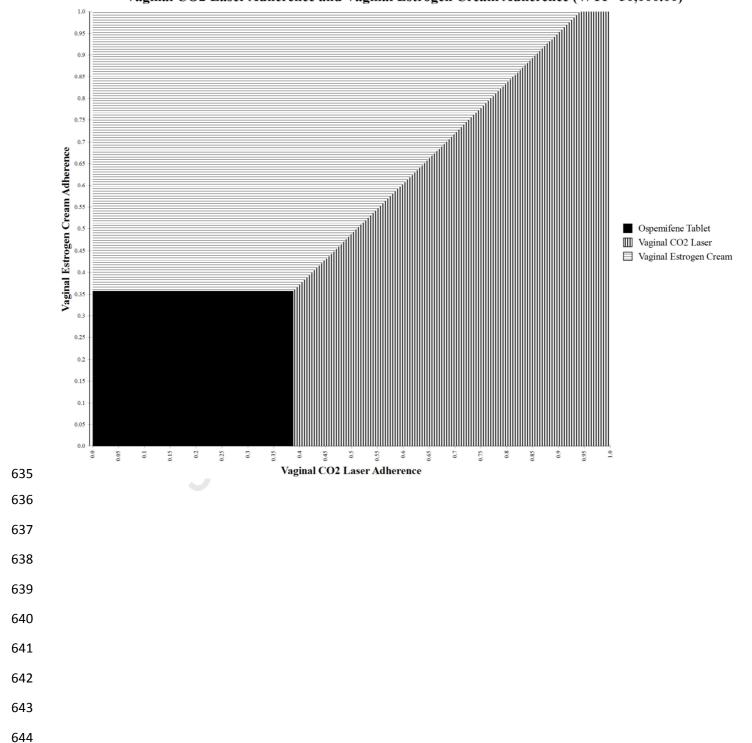
Table 2: Model Utility Values

Variable	Utility value	Source	Range
Dyspareunia	0.65	[47, 48]	0.2 -0.85
Improved dyspareunia after treatment	0.90	[47, 48]	0.65-0.95
Headache	0.79	[49]	0.3-0.95
Breast tenderness	0.83	[48]	0.4-0.98
Postmenopausal vaginal bleeding	0.83	[50]	0.4-0.98
Endometrial hyperplasia/cancer	0.76	[51]	0.3-0.95
Vaginal discharge	0.96	[48]	0.5-1.0
Vaginitis	0.96	[48]	0.5-1.0
Dysuria	0.90	[52]	0.45-1.0
Hot flashes	0.85	[48]	0.4-0.98
Muscle spasms	0.71	[48]	0.3-0.95
: Model Cost Estimates			

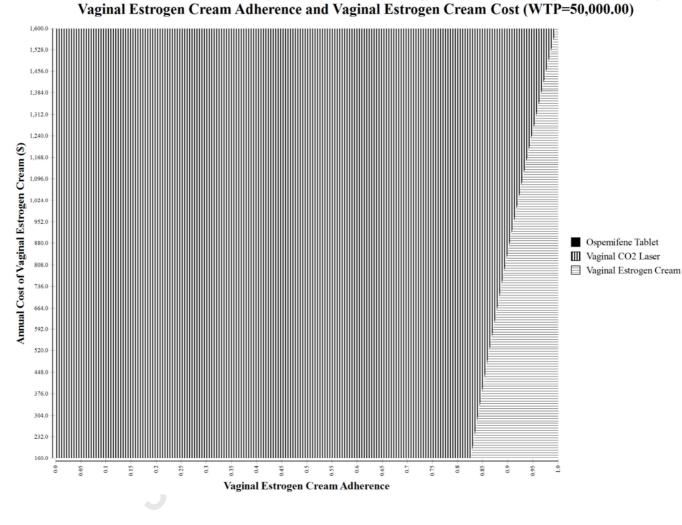
Table 3: Model Cost Estimates

Variable	Cost	Source	Range
3 months of vaginal estrogen cream	\$200.00	[53, 54]	\$40-\$400
1 year of vaginal estrogen cream	\$800.00	[53 <i>,</i> 54]	\$160-\$1600
3 months of ospemifene	\$210.00	[53 <i>,</i> 54]	\$42-\$420
1 year ospemifene	\$840.00	[53 <i>,</i> 54]	\$168-\$1680
1 session of CO ₂ vaginal laser treatement	\$911.00	[53, 54]	\$182.20-\$182
3 sessions of CO ₂ vaginal laser treatment	\$2,733.00	[53, 54]	\$546.60-\$546

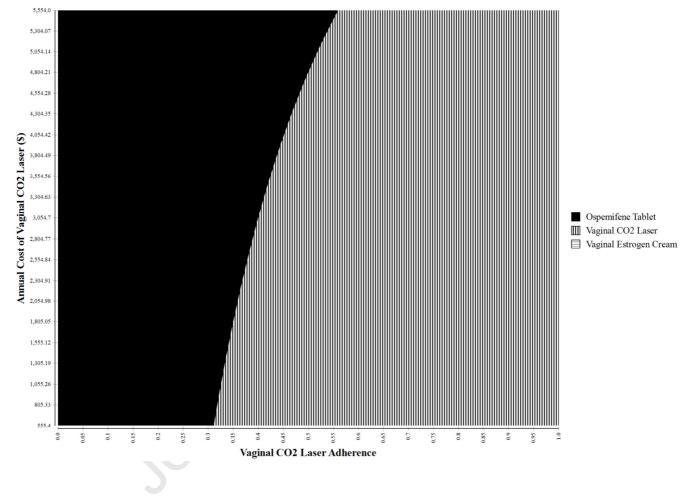

- Table 4: Base case one-year cost, effectiveness, and incremental cost-effectiveness ratio for
- 613 GSM-associated dyspareunia treatment options ranks by cost

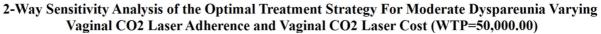

					Incremental	ICER (2017
			Incremental			
Model	Strategy	Cost (2017 Medicare \$US)	cost	(QALY)	(QALY)	US\$/QALY)
Base case adherence						
Moderate Dyspareunia	Vaginal estrogen	\$344.00	-	0.69	-	-
	Ospemifene	\$462.00	\$118.00	0.71	0.02	\$5,711.14
	CO ₂ vaginal laser	\$2,497.10	\$2,035.10	0.84	0.12	\$16,372.01
Base case adherence						
Severe Dyspareunia	Vaginal estrogen	\$344.00	-	0.57	-	-
	Ospemifene	\$462.00	\$118.00	0.61	0.02	\$3,254.15
	CO ₂ vaginal laser	\$2,497.10	\$2,035.10	0.80	0.19	\$10,651.98

- Table 5: One-year cost, effectiveness, and incremental cost-effectiveness ratio for GSM-
- associated dyspareunia treatment options ranks by cost assuming 100% adherence for all
- 617 strategies


		0			Incremental	ICER (2017 US\$/QALY)
Model	Strategy	Cost (2017 Medicare \$US)	Incremental) cost	Effectiveness (QALY)	effectiveness (QALY)	
100% adherence						
Moderate Dyspareunia	Vaginal estrogen	\$800.00	-	0.82	-	-
	CO ₂ vaginal laser	\$2,777.00	\$1,977.00	0.87	0.05	\$39,508.31
	Ospemifene	\$840.00	\$40.00	0.8	-0.02	Dominated
100% adherence						
Severe Dyspareunia	Vaginal estrogen	\$800.00	-	0.80	-	-
	CO ₂ vaginal laser	\$2,777.00	\$1,977.00	0.85	0.05	\$39,508.31
	Ospemifene	\$840.00	\$40.00	77	-0.03	Dominated

624 Figure 1: Tornado Plots




2-Way Sensitivity Analysis of the Optimal Treatment Strategy For Moderate Dyspareunia Varying Vaginal CO2 Laser Adherence and Vaginal Estrogen Cream Adherence (WTP=50,000.00)

- 2-Way Sensitivity Analysis of the Optimal Treatment Strategy For Moderate Dyspareunia Varying Vaginal Estrogen Cream Adherence and Vaginal Estrogen Cream Cost (WTP=50,000.00)
- Figure 3

657 Figure 4

